LATIHAN PAS
26). x = 0
27). Dari kelima fungsi yang diberikan pada opsi, hanya opsi E yang menunjukkan fungsi logaritma dengan 0 < a < 1
yaituJadi, termasuk fungsi turun.
28). f(x) = x² -2x + 9
a = 1b = -2
c = 9
nilai minimum
y = (b² -4ac)/(-4a)
y = ((-2)² -4(1)(9)) / (-4(1))
y = -32/-4
y = 8
y = ((-2)² -4(1)(9)) / (-4(1))
y = -32/-4
y = 8
29). x(log2) - y(log3) + z(log5) = 10
log2ˣ + log5^z= log10¹⁰ + log3^y
log 2ˣ .5^z = log10¹⁰. 3^y
2ˣ . 5^z = 10¹⁰. 3^y
2ˣ . 5^z . 3^0= 2^10. 5^10. 3^y
x = 10
y = 0
z = 10
maka :
2x + 8y - 3z = 2(10) + 8(0) - 3(10)
= 20 + 0 - 30
= -10
30). ²logx² + ³logy⁻³ = 4
2²logx - 3³logy = 4misal ²logx=p, ³logy=q
maka, 2p-3q=4.... (1)
²logx + ³logy⁴ =13
⇒ ²logx + 4³logy=13
⇒ p+4q=13...(2)
subtitusikan pers.1 &2
2p - 3q =4
2p + 8q = 26
diperoleh
p = 5 ⇒ ²logx = 5
q = 2 ⇒ ³logy = 2
⁴logx -
31). ᵃlog b = n → b = aⁿ
²log (4ˣ + 6) = 3 + x4ˣ + 6 = 2³⁺ˣˣ₁
4ˣ + 6 = 2³. 2ˣ
(2ˣ)² - 8 (2ˣ) + 6 = 0
misal 2ˣ= a
a² - 8a + 6 = 0,
akar akarnya a1 dan a2
a1. a2 = 6
2ˣ₁. 2ˣ₂ = 6
2⁽ˣ₁⁺ˣ₂) = 6
x₁ + x₂ = ²log 6
xlog (4x + 12) = xlog x^2
berarti
4x + 12 = x^2
x^2 - 4x - 12 = 0
x = 6 atau -2
a1. a2 = 6
2ˣ₁. 2ˣ₂ = 6
2⁽ˣ₁⁺ˣ₂) = 6
x₁ + x₂ = ²log 6
32). xlog x^2 = 2
xlog (4x + 12) = xlog x^2
berarti
4x + 12 = x^2
x^2 - 4x - 12 = 0
x = 6 atau -2
33). √²Log (x²-5x+8) = ² Log 2
Komentar
Posting Komentar